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ON THE DIURNAL TIDE WITHIN THE THERMOSPHERE

H. Volland and H. G. Mayr

Goddard Space Flight Center, Greenbelt, Md.

ABSTRACT

The atmospheric tide within the thermosphere driven by the solar EUV heat
input has a predominant diurnal component, contrary te the tides within the
lower atmosphere where the semidiurnal component prevails. Based on this
observatorial fact, a theory of the thermospheric tides is given in which the
spherical harmonics of lowest degree are considered as the eigenfunctions of
the problem. Perturbation theory is used which leads to a complete separation
between a zonal and a diurnal system. A general solution is given and the zonal
and the diurnal horizontal windsystem at 300 km height is calculated. This
windsystem has an equatorward directed component at low latitudes during day-
time which allows to explain the equatorial F2 anomaly as resulting from an

enhancement of electrons at +10° latitude due to such winds.
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ON THE DIURNAL TIDE WITHIN THE THERMOSPHERE

1. Introduction

While the knowledge as well as an adequate basic theory of the tidal motion
of the lower atmosphere are more than 100 years old [see e.g. the review articles
of Wilkes (1951), Kertz (1957) and Siebert (1961)], the diurnal tidal variation of
the thermospheric density has been discovered only _J years ago from satellite
drag measur=~ments (see e.g. the review article by Priester, et al. 1967). The
most important difference between the atmospheric tides within lower and upper
atmosphere is the predominance of the semidiurnal component in the lower
atmosphere and the predeminance of the diurnal component in the upper atmos-

phere.

There exists general agreement that the driving force within the whole
atmosphere is predominately solar radiation — absorbed by water vapor in the
troposphere, by ozon in the stratosphere and mesosphere and by oxygen within
the thermosphere (Lindzen, 1967). Thus, the diurnal component of the driving
force is much larger than the higher harmonics. The predominance of the
semidiurnal tide within the lower atmosphere in spite of its smaller excitement
has originally been considered as a resonance effect. One eigenvalue of the
atmosphere comes very close to 12 hours, the period of the semidiurnal solar
tide. Recently, however, suggested by Siebert (1961) and quantitatively worked
out by Kato (1966) and Lindzen (1967), it has been shown that the diurnal com-
ponent really is the extraordinary or.e being an evanescent mode with negative

equivalent depth so that its propagation is suppressed. It will be shown in



section two of this paper that the diurnal solar tidal wave becomes a propagation

mode within the thermosphere, thus predominating the tidal motion there.

Tidal theory of the thermosphere started with the one dimensional model of
Harris and Priester (1962) in which heating within a vertical column and its re-
sultant dyraxanic behavior have been studied. The main shortcomings of this theory
were that the calculated diurnal density variation was not in agreement with the
observations. Harris and Priester therefore introduced an ad hoc second heat
source in order to shift amplitude and phase of the calculated valucs toward the
measured data. It has been shown from a two dimensional equatorial model
(Volland et al., 1969) that the natural response time of the thermosphere
with respect to maximum solar heating is just 2 hours in agreement with the
observations and that a diurnal tidal gravity wave propagating from the lower
atmosphere into the thermosphere is superposed to the diurnal waves generated

within the thermosphere by the EUV heat source.

A complete theory of the diurnal tide within the thermosphere is more com-
plicated than the classical tidal theory because heat conduction has to be taken
into account. Therefore, the basic tidal differential equation becomes a fourth
order equation contrary to the second order Laplace equation in the classical
case. Moreover,the number of eigenvalues doubles,and there does not more exist
a clear distinction between propagation modes and evanescent modes because the
eigenvalues are complex. On the other hand, the theory of the thermospheric

tides in some ways becomes easier to handle than the classical theory because
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of the predominance of the diurnal component and because the boundaries of a

given thermaspheric model behave like free internal houndaries.

Subject of this paper is to give the basic equations and general solutions of
the the~mospheric diurnal tide. Furthermore, we shall discuss the implications
of these solutions on the thermospheric wind system and calculate the horizontal
wind field at 300 km altitude. An exact numerical integration of the tidal motions

will be given in a subsequent paper.

2. Propagation Modes and Evanescent Modes

In this section we will give a very crude description of the propagation
modes and the evanescent modes in tidal theory based on a plane model of the
earth and veglecting Coriolis force and heat conductivity. We do this merely to
achieve a basic physical picture of the nature of the wave modes and its change

within the different atmospheric levels.

We idealize the earth's atmosphere during equinox by a rectangular trough
of length >\y = 27R and of width A _. R is the earth's radius. x represents the
meridional component, positive in south direction. y represents the longitudinal
component, positive in east direction. The length of A will be defined below.
The lower boundary of the trough is the earth's surface. The trough is open in
the upward direction. The atmosphere within this trough shall be isothermal
and shall behave adiabatically. In such atmosphere the diurnal éolar heating can

generate gravity waves nf the following type:

c = A, ccos(k, y) exp(jo,TxjA_2) 1)

nm om n



with
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(m,n) integers determining the domain of wave mode.
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eigenvalue of the gravity wave of domain (n,m) [see Hines (1960), Equation (14);

and

Siehert (1961), Equation (4.12)]

C velocity of sound
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g gravitational acceleration force

v ratio between the specific heats at constant volume and at constant pressure.

_2¢nm+ 1) (-1
S"“‘ - mK y 2 G)

The last approximation in Equation (2) is valid because within the ranges of fre~

quency and height, which we consider, itis o, >> «_.

The plus sign of the exponential factor in Equ 1on (1) is related to an upward
propagating gravity wave, the minus sign is related to a downward propagating
wave. We define as propagation modes waves with real eigenvalues A__[S__ > 1
in Equation (2)] and as evanescent modes waves with imaginary eigenvalues
A= i|M,] [S,, < 1in Equation (2)]. Evanescent waves are suppressed very
rapidly during their propagation. They do not participate in an effective wave
energy flux. A wave changes its character from a propagation mode into an
evanescent mode at S = 1. The boundary condition of zero wind velocity at the

ground (z = 0) determines the remaining amplitude factors A = of a combination

of an upgoing and an downgoing wave of the same domain (n,m).

The specific choice of the x~component of the horizontal wavenumber in
Equation (1) has been made in order to allow a direct comparison with the eigen-
values +m a sphere. These are for a nonrotating spherical earth the spherical
functions P__ (6), where P__ are the associated Legendre's polynoms and ¢ is
the colatitude. This comparison can be made by replacing the term cos (k__y)
in Equation (1) by P_, . Inthe classical theory of tides the horizontal wave-

number k  is equal to
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k= = , )

where h  is the so-called equivalent denth, because water waves iu shallow

oceans of depth h  have in fact the horizontal phase velocity

According to our definition, k_ is the horizontal wavenumber which deter-
mines the horizontal phase velocity V_ of the characteristic waves of frequency

a)m.

Table I contains the numbers S , of the first three symmetric functions P_,
from Equation (3) for the diurnal modes (m = 1). Row 1 in Table I has been cal-
culated for an isothermal lower atmosphere with temperature T, = 250° (C =
320 m/sec). We notice that the eigenfunction P, has a value S§,, < 1 and thus
belongs to the evanescent modes, while the higher eigenfunctions P,, and P., are
propagation modes. In an exact calculation taking into account Coriolis forcé

the eigenfunctions P must be replaced by the so-called Hough functions

[}

enm = ZCB(BT) Pﬂm

£=m

which are sums of the associated Legendre's polynoms centered around the pre~
dominant function P . The determination of the eigenvalues of 0 __ is much
more complicated than in the case of the nonrotating earth. Here, imaginary
horizontal wavenumbers k_ and therefore negative equivalent depths h_  appear

in Equation (2} for 6. and €,, (Lindzen, 1967). Thus, the condition of an



evanescent mode for P,, is even stronger valid than in the case of a nonrotating

earth. It is this fact, the evanescent mode type of the function

which causes its weak generation within the lower atmosphere in spite of the

predominant exitation force which goes into this wave domain by the solar heating.

Tabie II, row 2, contains the numbers S , calculated for a temperature cf
T, = 1000°K (C = 750 1r/sec) which is a typical thermospheric temperature.
Now we notice that evei the first eigenfunction P, belongs to the propagation
modes. Heat conducticn and ion drag reduce the influence of the Coriolis force
within the thermosphere (Volland, 1969). On the other hand, the difference be-
tween propagation modes and evanescent modes becomes vague because the
eigenvalues are complex giving rise to wave energy dissipation even of propaga-
tion modes. Full wave calculations of the propagation of free internal gravity
waves within the thermosphere show that maximum transmission of gré,vity
waves exists near S = 1 and that with increasing S > 1 the transmission

coefficient of gravity waves drops like
'Tnmll ~ (Snm)mb # (Snm > 1)

whkere b is a positive number depending on frequency and the model adopted

(Volland, 1968b).

We expect therefore that the high temperature, the specific gzometric and
rotational data of the earth and the influence of heat conduction and ion drag

cause the preference of the function P, in the diurnal tidal wave propagation



within the thermosphere. This is exac.  what we notice from the observed
data of density and temperature (see e.g. Jacchia and Slowey, 1967; Priester et
al., 1967, Taeusch et al., 1968). The predominance of the term P,, begins at
about 110 lan aliitude as we can see from the analysis of the geomagnetic Sq

current (Kato, 1956).

3. The Basic Equations

The complete basic equations of conservation of mass, momentum and energy
and the equation of state written in spherical coordinates are given elsewhere

(Priester et al., 1967). The following analysis makes use of some assumptions:

a. Application of the perturbation theory and use of a given mean

atmospheric model

Perturbation theory implies that all physical parameters, depending on time
or latitude, are small compared with the mean values averagecé over time and
sphere. Thus, higher order terms of these parameters shall be neglected. This
is a sufficient approximation as long as the relative magnitudes of the coefficients

in the series of spherical harmonics are smaller than 0.3:

l20nl

850

<0.3 (n>0),

This condition holds in fact for all parameters of the thermosphere below ahout
400 km altitude (see e.g. CIRA, 1965; Volland et al., 1969). Numerical cal-
culations, which will be presented elsewhere, therefore, are limited to this

height range.



An important result of perturbation theory is, that the variations can be
complcicly separated into domains of numbers m, because any coupling beiween
the different domains m only occurs via nonlinear terms of the perturbation vari-
ables. The validity of perturbation theory, on the other hand, justifies the static
diffusion model of Jacchia (1964). Therefore, we can use mean values of tem-
perature, density and molecular weight from the Jacchia medel. Molecular
weight as well as the coeificient of heat conductivity show small time and lati-
tudinal variations below 460 km altitude in the Jacchia model. These values
therefore are considered to be only height dependent. The collision number
between ions and neutrals is proportional to the ion density. This value strongly
depends on height, latitude and time. In order to be consistent in our model we

can only take into account its height and latitude dependence.

b. Use of a given independent EUV heat source

The EUV heating of the neutral atmosphere via inelastic collisions with the
ions depends itself on the temporal state of density, temperature and composition
of the neutral air. For convenience we shall use a given independent EUV heat
source which can e.g. be derived from the calculations of Harris and Priester
(1562) and extrapolated into the whole sphere. In view of the large uncertainties
in the determination of the efficiency factor of the heating this does not add

very much to the errors already involved in the problem.



c. Negligence of molecular viscosity

Molecular viscosity mainly influences the horizontal wind field via vertical
windshear. It can be shown that below 400 km its influence on the dynamics of
the diurnal tides within the thermosphere is small compared with the accelera-
tion force or the ion drag force in the equation of conservation of horizontal
momentum (Geisler, 1967; Kohl and King, 1967; Volland et al., 1969). The

negligence of viscosity greatly simplifies the handling of the differential equations.

d. Wind components are perturbation variables

We shall treat all wind components including a mean longitudinal wind v,
as perturbation variables, thus neglecting squares and higher order terms. This

is justified because generally the condition

lanml

C

<0.3

holds below 400 km altitude. a_ _ is the coefficient of one of the wind components
within the series of spherical harmonics, and C is the velocity of sound in the
particular height. Furthermore, we shall assume that the ions are completely
bound by the earth's magnetic field, but can move freely with the neutral wind
along the geomagnetic lines of force. Then the relation between ion velocity ¥,

and neutral air velocity V is given by

- (v go) B, &)

V. = —-—
i 2
By

where ﬁo is the magnetic field of a dipole which approximates the geomagnetic

field.
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e. Predominance of lowest domain numbers n

Our model is valid for equinox conditions. Therefore, the asymmetric
spherical harmonics of density and temperature variation disappear. Moreover,
ws confine ourselves to the diurnal component of the tides. We treat, therefore,
only the domains 1 = 0 and m = 1 of number m. As outlined in section 2 we have
reason to believe fromr a theoretical point of view that the term P, is predomi-
nant throughout the the: mosphere. This is confirmed by the measurements
(Priester et al., 1957; Jacchia and Slowey, 1967; Taeusch et al., 1968). Likewise,
the density observations show a predominance of the term P,, in the meridional
variation Newton, 1968). We, therefore, assume that within the domains
m = 0 and m = 1 the higher order n~ terms of the density variations are small
compared with the perturbation coefficients of P,, and P,, and can be neglected.
Equivalent assumptions are made for the other physical parameters. This
classification of the coefficients of the spherical harmonics into three classes

of successive importance:

250 >> lag| >> |a,,l (nz24)

(6)

30 ~7 |a11| >> |a | (n 2 3)

greatly simplifies the calculations. It means that we can in fact treat the spheri-
cal harmonics P,; and P, as the eigenfunctions of systems m = 0 and 1, re-

spectively.

With the assumptions ouilined above the system of equations governing the

dynamic behavior of the thermosphere is given by
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Equations (7) to (12) are the equations of conservation of mass, momentum and

cnergy, respectively. Equation (12) is the equation of state. It is

(8, \, r) spherical coordinates

t time

v = (u, v, w) vector of wind velocity with i*s components in south-, east-
and upward direction.

p pressure (p,, mean pressure)

p density (o,, mean density)

T temperature (T,, mean temperature)

1 angular frequency of the earth's rotation

v numbar of collisions between the ions and one neutral

12



I Inclination angle of the earth's magnetic dipole field
g magnitude of gravitational force

¢, specific heat at constant volume

Koo Mean coefficient of heat conductivity

R gas constant

My, mean molecular weight

di 5 = __1___i in 8 +__1_.ﬂ __i 2.
vV r sin@ 98¢ (sin 0 u) rsin93>\+r23r(r )

_ 1 a2 1 03 /. 2
A = + 35 sin 8 55
r?2 sin26 9A2 2 s5in@ o

Development of the Physical Parameters in Series of Spherical Harmonics

Our model shall be valid during equinox conditions. Therefore all asym-

metric spherical functions in the development of density, temperature and pres-

sure disappear. Because of our assumption in Equation (6) higher order terms

of the coeificients jn the series of spherical harmonics are neglected. We use

the unnormalized associated Legendre polynoms, which are

Poo = 1
P,y = cosd ; P11 = sind
P . 2 = i
20 = —2‘(3 cos?0 - 1) ; le = 3 sinf cos b

We start with the expressions for temperature, density, pressure and vertical

wind. They have the general form
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a(r, 6, N) = ago(r)Pgy + 8,0 (r)Pyo(6) *+ a5, (r)Py,(0) ei7 (13)

Here, of course, the mean vertical wind disappears (w,, = 0). Because a,, (r)

is complex, we consider the real part

2 Real { a;, () ejQT} = |Al cos{ Q(r - 'ru)}

as the physical solution.

|l = 2]y
is the magnitude and
arg(a,)
- = -
11 Q
is the time lag.
It is
_ LA
T = t a

the local time, while t is the universal time.

In the development of horizontal winds info series of spherical harmonics it
is convenient to add a factor (sin 0)*! to the series. This allows a direct trans-
formation of the spherical harmonics of equal domain m within the system of
Equations (7) to (12), merely by using the well known recurrence formulae of

spherical functions.

We have to introduce a mean longitudinal wind v, in order to obtain a

unique solution of the problem. Meridional winds as well as longitudinal winds

Yot
W



are symmetrical with respect to the equator during equinox. Longitudinal winds
and the zonal-component of the meridional wind disappear at the poles. But the
time dependent component of the meridional wind is different from zero there,

because a finite pressure gradient can be maintained at the poles.

In order to fulfill the conditions outlined above we introduce the expressions

u21(r)

u(r, 8,0) = sinfu,, (r)P,(0) + /3

Py, (0) i (14)

v(r, 8, 0) = sin€ {vyo(©)Pgo + vy0 (r)Pye(8) + vy (1)Py; () ¥} (15)

We have reasons to expect that this representation of the horizontal winds
possesses the fastest convergence rate, thus allowing as a first order approxi-

mation the negligence of higher order terms in the series.

We furthermore assume known functions of altitude of the coefficient of heat
conductivity «,, = A(r) }/mr—) and of molecular height M;, (r). Likewise, the
EUV heat source Q is assumed to be developed in a general form of Equation (13).
As one can easily see from a harmonic analysis e.g. of a Chapman-function of
the ion production the three coefficients in Equation (11) constitute the predomi-

nant heating terms.
Finally, we take a known function of the collision number
vF vgekr) Pog vy (1) Pyg (0) {16)

because the coefficients v4, and v,, have comparable magnitudes. The angle of
incidence I of the geomagnetic dipole is related to the colatitude in a well known

manner. We obtain
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J
and develop
1

17+ 300528 20oPgo * ayoPye(d) + . . .

with

)

0.604

-0.520,

Q
Il

neglecting higher order terms.

With these assumptions we enter Equations (7) to (12), use the recuirence
formulae of the spherical harmonics (see e.g. Jahrke and Emde, 1945), collect
all coefficients belonging to the domain (n, m) and o -in for each Equation (i),
numbered according to the Equation-number (7) to (1. ; sxpressions of the general

form

) [24]
) ) B (R @y e < 0 (17)

n=0 m=-®

Because of the orthogonality of the spherical harmonics each coefficient F(!)

must be zero. Thus, we find the set of equations (for abbreviation we write;
3

.—-—-:1)

or

16
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The right hand side of Equation (18a) is not exactly zero but consists of
terms of the same order of magnitude as the terms in Equation (19f). As one
can easily see, these terms are two orders of magnitudes smaller than the terms
on the left hand side in Equation (18a). If they are neglected, Equation (18a) is
the barometric height formula. Now the system of Equations (18) is completely
decoupled from the system of Equations (19) and gives the mean values averaged

over time and sphere.

Equations (19) belonging tc the domain m = 0 describe the time independent
latitudinal variations of the thermospheric parameters. This sysiem will be
called the zonal systemw. Ecquations (20) belonging to the domain m = 1 give the

diurnal variations. We call this domain the diurnal system.

5. QGeneral Solution

The approximate validity of the barometric b:2ight formula [Equation (18a)]
allows the determination of mean temperature, pressure and molecular weight
from the observed mean density by a static diffusion model (Jacchia, 1964). In
our treatment of the diurnal tide within the tharmosphere we therefore start with
these known parameters of the thermosphere and use them for the normalization

of the set of Equations (19) and (20). We write for abbreviation

19



w(®) = , /C wih = w,,/C

P = p,/Pyo D = PyiPoo

T = T, /Ty, T = T,/Ty,

¥ = k40The/ (Cpgo) vy = kg0 T147 (Crgg)

Vo) = y,,/C Pt = /000 (21)
v(® = v v = v, /C

u(® = u;0/C ully = u,,/C

PO = pay/igg

QO = Q,0/(py,) QY = Q/ (Qpyy)

We eliminate the parameters p¢i), v(i) u(i) and V(%) from Equations (19d)
to (19g) and (20d) to (20f), respectively, and obtain two independent systems of
first order linear ordinary differential equations, which we write in concise

matrix form

de(®) . : .
a5 T KB (&) e +hiD () (22)

20



with

w(i)\ /0
p(d) 0
e(i) = s R(D) = i (1=0,1)
T() 0
y(i) —Qt)
and
.
g - Cr

C = velocity of sound

K(®) (£) is a 4 X 4-matrix with real elements, K(1) (¢) is a 4 X 4-matrix with
complex elements. The elements of K(1) can be found from Equations (1v) and
{20}, respectively. The elements of K(i) as well as of ¢, are dimensionless

and are of comparable magnitudes.

Equation (22) can be solved by standard methods. If we approximate the
real atmosphere by a number of isothermal homogeneous slabs of thickness A&
in which the elements of K r(i) are constant, then the solution of Equation (22)

is

©(€,) = By o)+ 0 (23)

21



with

£=0
i
of = ) PiA b AZ
r=i+l
wag o 0 &)
e = 3
=0
o K gt
AT Z (c+ 1y
£=0
E unit matrix,
C,./C, O 0 0
0 1 0 0
r, =
0 v T,_ /T, 0
\
\ o o 0 C_/K

The matrix I', matches the boundary conditions of continuous wave parameters
w, p, T and « T' at the boundary between two adjacent slabs of temperature T,.,

and T,.
1

22



6. The Horizontal Wind System

From Equations (19e) to (19g) and from (20e) and (20f), respectively, we
notice that the horizontal winds are connected with the vertical wind and the
pressure by linear equations. Since the vertical wind is at least one order of
magnitude sialler than the horizontal wind corponents, we can neglect the
vertical wind. In the following discussion we =hall neglect furthermore the
higher order terms v,, and a,, of the collision number and of the magnetic dip
angle, because they influence the numerical values of the winds but not their
general behavior. In the numerical calculations which will follow in the next

section we shall however take into account these higher order terms.

Negligence of vertical winds and of latitudinal dependence of collision num-
ber and dip angle leads then to very simple relations between the horizontal wind

components and the pressure field. These are for the zonal systera (m = 0)

Yoo 7 1 P20
c 6 v Poo
1+ _a— Qoo Y f
(24)
Vao T 2 Vg
. 3l
Yo = T2 70 Voo
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For the diurnal system (m = 1) we obtain

( 7. o)
v I\ Taen
cC 9 y&A Poo
(25)
Vit 49 60 = Yoo 1 Py
T - "‘15(1‘?9‘17%0> Y8 poy

with

~
Y0
Voo L 1
« and luyy| P& —
2 Yoo
Voo Yoo
v,
J

For small collision numbers (v,,/Q << 1) only the meridional zonal velocity

Ujq ® ¥4, depends on v ,. The magnitude of the horizontal winds taerefore is

very sensitive with respect to the collisions between neutrals and ions.
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The longitudinal wind of system m = 0 is

v sin@ (vooPog + vyPpg) = 3 sinf cos?O v, (26)

zonal

This wind is the geostrophic wind due to the meridional pressure gradient p,, .
Collisions between neutral and ions cause a mean meridional wind u,, to flow
in the direction of the pressure gradient. Collisions moreover reduce the mag-

nitude of the geostrophic wind v

zonal *

r

A 1ean longitudinal wind { Equation (26)] means that the whole atmosphere
rotates with respect to the earth surface. It has been pointed out by King-Hele
and Allan (1966) that such wind exists within thermospheric heights. King-Hele's
winds, derived from the observation of the changes in tae orbit inclinations of
satellites, blow from west to east and are of the order of 100 m/sec. One of
King~Hele's explanations for the origin of these winds is in fact the geostrophic
wind hypothesis. The pressure gradient built up to generate this wind must be
directed toward the poles. Observation of Jacchia and Slowey (1967) as well as
density measurements on board of Explorer 32 (Newton, 1968) however
show that during low solar activity (F < 150) the zonal pressure gradient is
directed toward the equator above 300 km altitude (p,, > 0). According to
Equation (24) this pressure gradient causes a meridional wind u,, blowing
toward the equator which is in agreement with a hypothesis to explain the equa-
torial F2 anomaly (Mayr and Volland, 1969). At moderate solar activity (F = 150)
the zonal pressure p,, disappears and it seems likely that it becomes negative
at high solar activity. According to Equations (24) and (26) we therefore expect

a zonal wind blowing toward the west at low solar activity and blowing toward
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the east at higii solar activity. Getsler (1967) too finds this westward zonal wind
at solar minimum conditious from his numerical study of the horizontal wind-
system in the thermosphere. King-Hele however states from his observations
that the mean wind always blows toward the east regardless of the solar activity

with even a greater magnitude at solar maximum than at solar minimum.

There exist several possibilities to explain this discrepancy between King-
Hele's observations and the theoretical results. First, it will be shown in
Figure 2 that due to the higher order terms of the collision number and the geo-
magnetic dip angle the calculated zonal wind blows toward the east within +15°
from the equator at 300 km altitude. Second, we neglected in our calculations the
time dependence of the collision number. A diurnal term v,, would couple the
zonal system with ihe diurnal system. It bas been pointed out by Volland (1966),
that such coupling would in fact give rise to an additional eastward component of
the mean wind. Third, electric fields, entirely neglected in our treatment, could

cause ion drift such that the observed mean wind results (Hines, 1965).

We should bear in mind however that the zonal pressure gradient not only
depends on solar activity but also on Leight. For a better understanding of this
problem we need numerical calculations of the three dimensional wind and pres-
sure fields, and furthermore we have to wait for more detailed observational
data of the zonal wind depending on height, latitude and solar activity before a

final answer can be given.
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7. Numerical Calculations of the Horizontal Wind Field

For a numerical study of the horizontal wind field at 300 km altitude we used

the following data valid at low solar activity (F = 100):

Mean temperature and molecular weight from CIRA model 3. From (Volland

et al., 1969) the relative diurnal pressure

(A _ 2|pqa] - o.48
11)p Pso '
27)
(Ty1)p = 1430 local time
From Newton (1968) the zonal pressure, extrapolated from his density and
temperature data
Pao
= 0.25. (28)
Pgo

The collision number from the maps of the F2 critical frequency (Martyn, 1955)

Yoo 2.4 x 1074 sec”!

(29)

1

Voo = —1.9 x 1074 sec”!,

We calculated the horizontal winds from Equations (19e) to (19g) and (20e) and
(20f), respectively, and neglected the vertical wind components. Figures 1 and 2

give the calculated zonal winds

sin 0 u,y P, (6)

uzonal

(30)
sonal ~ sinf { vooPoo t Va0P30 (9)},
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the mean longitudinal wind

= sin 8 vy,Pyq (31}

v
mean

and the magnitudes of the diurnal winds

) P,,(0)
Ugiurnal =~ 2|uaq] sin @
(32)
Vaiwenar = 2lvyl sin@ Py ()
versus latitude. Moreover, the total horizontal winds
u = Ysonal + Yyiurnal ©OS [Q(T - 721)]
(33)
v = Vional + Vdiurnal cos [Q(T - Tll)] ’

where the time lags have been calculated to

3
!

11 - 2199 Jocal time

a1 = 220 local time,
are plotted for the time of maximum and minimum winds respectively.

We notice that due to the higher order terms v, and « 20 Of the collision

number and of the geomagnetic dip angle the zonal longitudinal wind v has

zonal

a small eastward component near the equator (Figure 2).

Furthermore, the meridional wind u blows at low latitudes toward the

equator even at day time. This unexpected resul. follows from the relatively

28



large zonal u,, -component which predominates the meridional velocity at low
latitudes. Such equatorial wind at noon can in fact create the equatorial F2
anomaly: the relative maximum of the F2 electron density at +10° latitude and
the trough at the equator. The electrons drift upwards by the equatorial wind
and cause an enhancement of the electron density near the equator (Mayr and

Volland, 1969).

The wind u,, depends on the zonal pressure gradient p,,. This pressure
gradient disappears at heights above M}f_:-/km at moderate solar activity and
probably becomses negati;fe with further increasing solar activity (Mewton,

1968). Asa conséquence the equatorward directed wind at noon decreases or
even reverses with increasing solar activity, giving rise to a weakening or disap-
pearance of the F2 anomaly. This picture is in qualitative agreement with the

observations.

An equatorward wind implies of course a total pressure gradient directed
toward the equator. The combination of the pressure terms p,, and p,, chosen
in Equations (27) and (28) therefore gives rise to a small relative pressure mini-
mum at the equator at noon. The elongation of the density bulge at noon and at low
solar activity observed by Jacchiu and Slowey (1967) points in fact into this direc-
tion. It is possible that due to the low degree of space and time resolution in the

satellite drag measurements this minimum has been overlooked.

Whether the p,, term is mainly created by solar EUV or by another heating
mechanism (e.g.: the regular component of the precipitation of high energy

electrons into the auroral zones related to the geomagnetic S ~current) is an
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open question. The different components of the pressure gradient are certainly
functions of height. Since most of the heat is deposited within a height range
below 200 km we expect a pressure gradient built up there and directed away
from the heating zone. In the case of solar EUV heziing this would be a gradient
toward the poles. Due to this pressure gradient a global wind system is set up,
in which the vertical wind plays a decisive role. There must be a height range
— probably the region above the main heating zone — where a return flew achieves
flow continuity. This return flow however must be connected with a pressure
gradient directed opposite to tt pressure gradient within the main heating zone.
Because of the important role of the vertica: wind a quantitative treatment of
such problem is only possible by a numerical integration of the dynamic equa-
tions of the spherical thermosphere [Equations (23)]. An attempt to determine
the vertical winds from the pressure field of the Jacchia model and from the
horizontal winds of Geisler (1967) via the equaiion of continuity (Dickinson and
Geisler, 1968) suffers from the unaccuracy of the density observations below

200 km altitude.

Figure 3 finally presents the horizontal wind field in the northern hemisphere
at 300 km height in a form used by Kohl and King (1967). This allows a direct
comparison between Kohl and King's winds (their Figure 5) and our wind. The
striking difference between both wind fields is the presence of the equatorward
wind component at low latitudes and of daytime in our wind field. This component
is due to the relatively large zonal wind. Its generating zonal pressure gradient
p,, can be observed already in Jacchia and Slowey's (1967) data at Jow solar

activity, though Jacchia's number value is smaller than the value observed by
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Newton (1968). Kohl and King (1967) entirely neglected the zonal winds. They

moreover used a constant collision number for the whole hemisphere.

Therefore we can only compare our diurnal windsystem (u,,, v,,) with their
data, which ig in reasorable agreement. It shows that slight differences in the
numerical data of the pressure gradient p,; and of the collision number » are

relatively unimportant coinpared with the influence of the zc«al winds.

Geisler's (1967) winds are very similar to Koh] and King's (1967) winds
because they are based on the same calculation method. Gei ..er, however, found
already the mean component v, from Jacchia's data. Since Jacu.. s zonal
pressure component is supposed to be too small, Geisler could not detect the
equatorial winds at daytime, though he observes ''a convergence in low latituces"
in his horizontal wind field, which is the direct congequence of the superpo-ition

of the diurnal system with the zonal system.

8. Conclusion

The solar diurnzl tides of the spherical thermosphere have been treated
using spherical h:.rmonics of lowest degree a3 eigenfunctions of the problem.
Perturbation theory is a sufficient approximation within the thermosphere below
400 km altitude. It allows fo determine the inean physical pariieters like pres-
sure, temperature and molecular weight from the observed density data by a
static diffusicn model (Jacchia, 1964). Thus, these data were the basis for a
perturbation treatment of the hydrod:mamic equations leading to & complete

separation between a zonal component, depending only on latitude and height, and
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a diurnal component, depexildent on latitude, height and local time. A general

solution for both the zonal and the diurnal system is given.

The horizontal wind field turns out to depend mainly on the horizontal pres-
sure gradients. Based on observed data for the zonal and the diurnal components
of the pressure gradient, the horizontal wind at 300 km altitude and for low solar
activity has been calculated. Its results show an equatorward directed wind .low
at low latitudes even at day time which is due to the relatively large zonal pres-
sure gradien:. This wind could possibly cause the equatorial F2 anomaly: the
trough in the electron density at the geomagnetic equator dviing low solar

activity.
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Table I

Number S__ of the .igenfunctions P of the diurnal tidal component

(m = 1) for two different isothermal atmospheres of temperature

T, = 250°K and T, = 1000°K.

P11 Py Py,
T0 = 250°K 0.88 2.16 341
T, = 1000°K 2.16 5.29 8.36
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Figure 3. Calculated horizontal wind system ot 300 km altitude
in the northern hemisphere versus local time
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